

Hands-on Science

Learning the scientific method (and higher order thinking) by doing Presented by Sue Domanico, Ed.d., Edadvance

Goals for this session

- Plan to integrate scientific inquiry and other student-centered activities into lessons when you have limited time and instructional resources
- Participate in/try out activities that you can use with your students
 - Vocabulary acquisition
 - Investigation design
 - Working with data
 - Close reading
 - Experiments

It's not a waste of time to do activities in Science!

- The more you DO, the more you LEARN
- Engagement + Purpose= Learning
- Pyramid of Integration
 - ► Audio (listen, lecture) 5%
 - Visual (see, powerpoint, videos) 10%
 - Info gathering (research) 20%
 - Communication (speaking & listening) 40%
 - Practice & Production (making, doing) 70%
 - Processing, Creating, Applying 90%

Translating the Assessment Guide into instruction

- Students will need to have experiences in the practices-not just read about them in a text!
- Must know
 - Key vocabulary (comprehending presentations, information, theories)
 - ► The steps in scientific method (investigation design)
 - Some practice working with data from tables, graphs and charts
 - Close reading skills
 - Experiments

Ideas for vocabulary acquisition

- Students will need to be able to recognize or decode scientific vocabulary!
- Focus on context and conceptual understanding
 - ▶ Try to avoid giving out word lists that teach vocabulary in isolation
- Visuals
- Multi-sensory strategies
- Word parts
- Interlanguage

S. Carter, http://www.learnnc.org/lp/pages/7079

Science Penguin http://thesciencepenguin.com/2013/12/science-solutions-vocabulary.html

Visuals

- Have students use a visual thesaurus
 - https://www.visualthesaurus.com/ : pronounces word, lists definitions, creates a map of related terms (limited free trials from ThinkMap)
 - ► Visuwords http://visuwords.com/ visual thesaurus and interactive features
- Graphic organizers
- Frayer Model or Marzano Squares

Word, picture/non-linguistic representation, student example, definition, synonym

or antonym if applicable

Try This!

- Select one of these scientific terms and complete a Frayer model
 - Cytoplasm
 - Mitosis
 - Magma

Multi-sensory

- Audiotaped instructions alongside written directions
- Pictures with words in stages of lab procedures that students can sequence
- Text cards
 - ► True/false cards
 - Agree/disagree cards
 - Matching pairs
 - Sequencing cards
 - Classifying/sorting

Word parts

- Some video resources to help:
- Divide and conquer more complex compound words
 - Prefixes, Suffixes, Root/base words
- Examples
 - photosynthesis photo (light), synth (make), isis (process)
 - metamorphosis meta (large), morph (change), osis (process)
- How to Understand Science Words-Science Nut https://www.youtube.com/watch?v=xHx2tsBkTYw (4 min)
- Breaking Down the Language of Science https://www.youtube.com/watch?v=d7fEpAKsdw8&t=3s (2 min)

Try some: use the scientific root words, prefixes and suffixes list to build words!

Try this!

- Break these words into their component parts to decode their meaning:
 - Exothermic
 - Homosapien
 - Paleontology

Interlanguage

- Translating everyday speech into the language of science
- Example
 - Student: "We put this smooth powder in the bag along with the crunchy powder and the bag blew up and got hot."
 - ► Teacher: "We mixed baking soda and calcium chloride with water resulting in a gas, and heat was released."
 - Scientist: "The combination of baking soda and calcium chloride is an exothermic reaction with the products of sodium chloride, calcium carbonate, and carbon dioxide."

Try this!

Translate this phrase into a more precise scientific statement:

The human body gets its shape from a bunch of bones including a head bone, back bones, hip bone and leg bones.

Teaching the Scientific Method

- Students will be asked to examine and critique experimental design!
- Quick overview of the scientific method from Teacher's Pet: https://www.youtube.com/watch?v=SMGRe824kak
- Direct instruction on the steps
- 1. Ask a question.
 - 2. Make a hypothesis.
 - 3. Test the hypothesis with an experiment.
 - 4. Analyze the results of the experiment.
 - 5. Draw a conclusion.
 - 6. Communicate results.
- Have students sequence the steps using sentence strips
- Develop everyday examples to familiarize students with the process

Try this!

Use the sentence strips in the resource packet to put the steps of the scientific process into the proper order.

Two simple?

- The scientific method has been under some scrutiny in the scientific community as an over-simplified version of the science process.
- ► The process of science is
 - Iterative
 - Not predetermined
 - ► Has many routes or launching points
 - New technology, practical problem, curiosity, personal motivation, serendipity, surprising observation
- This new version encompasses the traditional model but adds a degree of complexity and sophistication that what really happens in science.

www.understandingscience.org

Tables, Graphs and Charts

- Students will be asked to respond to questions utilizing tables, graphs and charts!
- How to make a line graph
 - 1. Label the x axis (horizontal axis) with the independent variable.
 - ▶ 2. Label the y-axis (vertical axis) with the dependent variable.
 - ▶ 3. Determine the range of your data that must fit on each axis. The range will set the scale.
 - ▶ 4. Number each axis division (line). Each division should be equally spaced.
 - > 5. Plot each data pair accurately as a point on the graph.
 - ▶ 6. Choose a title that describes the graph.

Try this out

- Examine the data from "Testing AA Batteries in a Flashlight"
- Use the checklist to create a chart to display the data on the table.
- Create three questions that can be asked and answered from the available data.

Close Reading in Science

- Students will need to read for comprehension and extract main ideas, key details and evidence from complex texts!
- Teacher work to prepare for using complex text that require close reading:
 - ▶ Select "compact, short, self-contained texts that can be read and reread deliberately and slowly" (Coleman & Pimentel, 2012, p.4).
 - Identify purpose for reading
 - Prepare text for presentation
 - Develop/share annotation scheme (key ideas, confusing, wondering, surprises)
 - Prep text dependent questions

Close reading process

- First reading: share purpose and process
- ► Chatting and charting: share responses and annotations with a partner
- Second reading: to research specific questions, comments from debriefing
- Chatting and charting: share back evidence from the text
- Independent work: respond to the text dependent questions

5 Steps for Close Reading

- 1. Read for a general first impression.
- 2. Re-read and mark up the text (tricky/interesting/action words).
- 3. Write predictions, opinions, and connections.
- 4. Ask questions (open-ended).
- 5. Decide big ideas/themes.

Then discuss your notes!

Types of text dependent questions in Science

- Comprehension questions: what does the text say?
- Text structure: how are parts arranged?
- Sequence: identify/analyze steps
- Clarification: ask for further explanation
- Inferential: reach conclusions from evidence in text not stated
- Organizing: sort the information by relevant criteria
- Academic vocabulary: determine word/concept meaning by context
- Purpose: what's the function or deeper meaning of the text

Try this out

ReadWorks.org

- Select one of the texts from ReadWorks.org (approximately Gr 8 reading level)
- Complete a first reading for general comprehension
 - What is the main idea?
 - What are the key words (academic vocabulary)?
 - Did anything surprise or confuse you in the reading?
- Discuss content with a partner
- Read again to respond to text dependent questions (require evidence from the text to answer)

Experiments

- Students will be able to retain knowledge and skills better if actually experiencing the content in multi-modalities
- Opportunity to design, conduct and critique investigations
- Can be done with limited time, resources, mess (sometimes!)

Physical Science

- Science Inquiry: Which Falls Fastest?
- GED Testing Service
- ► Theme: Effects of Air Resistance on different paper types
- Steps:
 - Make your plan (variables/constants, question, hypothesis)
 - Identify dependent/independent variables
 - Conduct experiment/collect data
 - Analyze and conclusion

Earth and Space Science

- Science Inquiry: Distances in the Solar System
- GED Testing Service
- ► Theme: Conceptualize distances in solar system by building a scale model
- Steps:
 - Assemble materials (distances table, roll of toilet paper, marker)
 - Construct the scale model based on the table
 - Reflect and process experience

Life Science

- Science Inquiry: Heart Rate
- GED Testing Service
- Theme: Impact of physical activity on heart rate
- Steps:
 - ▶ Take and record resting pulse
 - ▶ Walk, speed walk, jog, take pulse for minute following each and record the rate
 - Create a table or graph
 - Analyze and develop conclusions

What if you are not able to conduct live experiment?

- Myth Busters
 - MythBusters viewing guide
 - Archived episodes and episode guide: http://www.discovery.com/tv-shows/mythbusters/
- Skunk Bear/NPR
 - ► Stone Soup: How to Make Lava (You Tube or https://www.youtube.com/watch?v=25tYMaB70Al&index=29&list=PLKqe_oheltif3ow0EE6b3Tkf2pWxwRqs9

Reflection

- How is this type of science different from the traditional methodology of teaching and learning science content?
- In what ways is this approach more student-centered?
- ► GED Science requires some knowledge of content and vocabulary but contains much more emphasis on the scientific practices and reasoning skills

Questions and Feedback

- Please take a few minutes to provide feedback on this session: https://www.surveymonkey.com/r/ECAdultEd1516
- Sign up for other technology, GED Science, GED Social Studies and teacher evaluation workshops at www.edadvance.org/atdn
- For additional questions, contact
 - ► Sue Domanico Domanico@edadvance.org 860-567-0863 x186
 - ► Tony Sebastiano <u>tonys@edadvance.org</u> 860-567-0863 x132